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It is often assumed that maximization of the statistical entropy cannot account for the spontaneous emer-
gence of currents or compositional heterogeneity associated with them, and that other principles involving
entropy production �its maximization or minimization� must be invoked to explain the emergence and robust-
ness of the order in driven dissipative systems. I show for a class of simple models with driving and linear
dissipation that the assumption is invalid. For dynamical ensembles, the exact entropy generally becomes a
function of currents as well as the familiar equilibrium state variables, and from this richer dependence a full
thermodynamic dual structure can be constructed, which predicts both emergence and robustness of nonequi-
librium order. In systems of this type, the need for entropy production principles arises only if the exact entropy
is replaced with a coarse-grained entropy function of the equilibrium state variables alone. I briefly consider
some simple applications to thermal “ratchets,” in which induced cyclic currents display the essential elements
of Onsager cycling in chemical reaction graphs.
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I. INTRODUCTION

A. Statistical principles for emergence of nonequilibrium
order

Most current research in basic thermodynamics concerns
systems driven away from the classical equilibrium states of
Boltzmann and Gibbs. Their macrostates or ensemble de-
scriptions are distinguished from those of equilibria by one
or more of the following properties: �1� breaking of time-
reversal or time-translation symmetry �1–3� by the macro-
scopic dynamics of the system; �2� microscopic ergodicity
broken by kinetic factors, which cause fine structure of initial
conditions or relaxation history to leave persistent imprints
�4�; �3� heterogeneous intensive boundary conditions �such
as spatially variable externally imposed temperatures� that
overconstrain the set of extensive equilibrium state variables
�3�, and are thus inconsistent with an equilibrium Legendre
dual structure. Despite these differences, nonequilibrium
steady states often share with equilibria the emergence of
unique values for certain order parameters, and robustness of
those parameter values under disturbance of the system �5�.
An old, central question is thus whether general principles
can be found to account for the emergence and stability of
nonequilibrium order �6�.

The principle of entropy maximization, subject to con-
straint on ensemble averages of one or more dynamically
conserved quantities �7�, has essentially explained the
uniqueness and robustness of equilibrium macrostates
�though the difficulty of computing entropies makes this ex-
planation nonconstructive in many practical cases, and
leaves significant technical challenges to the study of phase
transitions�. Searches for informational principles such as en-
tropy maximization have thus been standard in nonequilib-
rium statistical mechanics, though they are often confounded
by the difficulty of defining a proper entropy function. An
important consequence of this difficulty, especially in sys-
tems that resemble equilibria locally in space, is that most
macroscopic characterizations of nonequilibrium systems

have used the state variables and entropy functions defined
for equilibria �6,8�. Since the spontaneous emergence of cur-
rents and other dynamical structures clearly does not maxi-
mize equilibrium entropy subject to any consistent set of
boundary conditions, principles advanced using equilibrium-
form entropy functionals have typically involved their rates
of change in the system or its environment �termed “entropy
production”�, either absolute �9� or relative to a phenomeno-
logical “dissipation function” �10�. In certain compelling ap-
plications of nonequilibrium thermodynamics such as bio-
chemistry, it has become a standard assumption that “new
physics” is needed to explain both their far-from-equilibrium
composition and their dynamics �11�.

I will consider here only a narrow class of nonequilibrium
systems: those with some kind of extended configuration
space to which reservoirs with different values of the same
intensive state variable can be attached at different points,
generating currents through the system in response. The ex-
tent may be in physical space or in a topological space such
as a graph of chemical species and reactions, and the spa-
tially variable boundary condition may be temperature,
chemical potential, or any other intensive equilibrium state
variable �in the examples I will suppose it is temperature�.
Earlier work on both linear �3� and nonlinear �2� systems of
this type, in nondissipative limits, showed that the spontane-
ously generated currents �which generally break time-
translation symmetry� arise within a formal structure identi-
cal to equilibrium finite-temperature statistical mechanics.
Here I will introduce dissipation but restrict to the regime of
linear response, and obtain broadly similar results, except
that with dissipation steady states become possible that break
time reversal but not time translation. Many real applications
of greatest interest, from convective weather to biochemistry,
are both dissipative and nonlinear, and will present further
technical and conceptual challenges in combining the present
and prior results.

My aim in this paper is to make three general points about
entropy and dynamical order, by demonstrating them in a
particular class of exactly solvable systems, chosen for sim-
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plicity and because the emergence of dissipation has been
well studied in them from first principles. Some of these
points have been recognized in other contexts, but taken to-
gether they argue that the informational interpretation of
thermodynamics, and ordinary entropy maximization, can
account for more of the order in nonequilibrium systems than
has been appreciated. The three points are as follows.

�1� The Shannon/Boltzmann definition of entropy �or its
quantum-mechanical generalization� remains exactly appli-
cable to some nonequilibrium systems, but in such cases
generally produces different functional forms than it does for
equilibria. The full Jaynesian interpretation of maximum en-
tropy subject to constraints on averages can even apply, and
with it the Legendre dual structure of thermodynamics,
though in general that too takes a richer form than in equi-
librium.

�2� In particular, in dynamical or dissipative systems,
current-valued as well as charge-valued observables become
eligible as extensive state variables, and the exact entropy is
generally a function of both �noted also in Ref. �12��. By
“current-valued” I mean observables that change sign under
time-reversal, as opposed to “charge-valued” observables
�such as total energy� that are time-reversal symmetric. The
increased complement of extensive state variables is needed
by a Legendre dual structure compatible with the richer
boundary conditions that drive systems away from their
equilibria.

�3� The spontaneous emergence and stability of currents
can in some such cases be explained by entropy maximiza-
tion subject to nonequilibrium boundary constraints, when
the exact entropy rather than an equilibrium-form approxi-
mation is used. In such systems new principles beyond en-
tropy maximization are not needed; the invocation of entropy
production or phenomenological dissipation functions are
consequences of using a coarse-grained entropy that is not
the actual measure of statistical uncertainty in the ensemble
description of the driven system.

B. Exact versus coarse-grained entropies

The use of equilibrium state variables and functional
forms for quantities such as the specific entropy has become
so standard that, even in nonequilibrium contexts, terms such
as “the entropy” and “entropy production” are used as if
these quantities were the true statistical uncertainty measures
of known ensembles �5�, rather than approximations too
coarse in some cases �3� to resolve the entropies associated
with the structures of interest �21�. It is therefore important
to state clearly the relation between equilibrium form and
exact entropies, at least for systems such as those considered
here, where that relation is well defined.

Equations of state based on space-local averages corre-
sponding to equilibrium state variables, and equilibrium
functions of them such as specific entropy, encode approxi-
mations: �1� that the projection of the distribution of mi-
crostates onto a small number of spatially local degrees of
freedom has the same relation to the local average of con-
served quantities as holds in equilibrium and �2� that corre-
lations between local regions are ignorable for the purpose at

hand �8�. A distribution in which the exact weight over each
global microstate is replaced by the product of the marginal
weights on local patches is one instance of a coarse graining
�13� of the exact distribution, and the integral of the
equilibrium-form specific entropy, which is the proper uncer-
tainty measure for the coarse graining, is a �generally slack�
upper bound on the entropy of the exact distribution �this is
the origin of a careful version of Boltzmann’s H theorem�.

In the examples below, the marginal distribution for each
local degree of freedom will indeed appear exactly thermal,
though the implied temperatures will vary in space and gen-
erally in time. However, the correlations among regions re-
sponsible for macroscopic currents are not ignorable, in the
sense that the entropy associated with them is responsible for
stability of those currents. The equilibrium-form entropy is
obtained by setting the current-valued state variables �a kind
of off-diagonal order parameter� to zero and keeping only the
charges, leaving the Jaynesian specification of a maximum-
entropy distribution that is another �possibly different� coarse
graining of the exact distribution.

The use of coarse-grained rather than exact entropy may
not represent a large relative error. However, that error is
variable in time, depending on details of the dynamics in
relation to the coordinates chosen for projection onto mar-
ginals, and can in general be larger than the entropy changes
associated with the nonequilibrium order parameter of inter-
est �3�. It is therefore not surprising that maximization of the
exact entropy may explain the form of induced currents,
while quite different-looking principles are required for ap-
plication to the coarse-grained entropy, which may depend
on phenomenological coefficients such as conductivities, and
which generalize poorly across different systems. Practically,
this may be the best one can do in many cases, and particu-
larly in the chemistry of solutions, which is deeply decoher-
ent, “the entropy” has always referred only to the coarse-
grained value. Whether it is possible to identify corrections
to the true entropy of chemistry from flows, along the lines
of the examples in this paper, is an important question for
future work.

C. Legendre dual structure, currents, and cycling

If principles applicable to the course-grained entropy such
as maximum entropy production �10� or minimum entropy
production �9� generate approximately correct answers case
by case, and the coarse-grained entropy is easier to compute
in a wider variety of cases, why bother with the exact en-
tropy ever? I argue here that the interpretive structure of
Legendre duality and the equation of state are fundamental
enough to our understanding of thermodynamic stability and
universality, that their extension to nonequilibrium settings
and current-valued state variables can lead to better notions
of dynamical ground states, self-organization, and universal-
ity.

The equilibrium equation of state relates intensive bound-
ary conditions to extensive charges induced in the system.
How many such dual pairs exist is determined by the dimen-
sional content of the theory, which may depend on the time
scales of interest. Energy/temperature and volume/pressure
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are universal state variable pairs for systems with temporal
and spatial extent. Atomic species numbers, and their dual
chemical potentials, may be valid pairs for macroscopic
chemical systems over very long times, defining a fundamen-
tal dimensional analysis of chemistry. On shorter times, mo-
lecular species numbers and chemical potentials, of which
there are far more, may carry independent dimensions. On
even shorter time scales and coarser levels of abstraction,
functional groups or bond types may define state variable
pairs. Ordinarily we rely on dimensional analysis to count
the number of constraints that can consistently be imposed
independently to generate an equilibrium system, but the
above points, central to understanding the order of biochem-
istry, illustrate that such counting can be subtle if multiple
time scales are coupled.

This paper does not attempt a proper statistical mechanics
of chemistry, but it will display the role of dimensions and
the way a dynamical generalization of Legendre duality can
address the subtleties of counting constraints in their sim-
plest instantiation: a system with multiple internal degrees of
freedom coupled to multiple thermal reservoirs. If the system
degrees of freedom are independent �the reservoir coupling
commutes with the system Hamiltonian�, each reservoir tem-
perature is dual to an average energy for its system degrees
of freedom. The system ensemble becomes a tensor product
of independent subsystem ensembles, and Legendre duality
and dimension counting are those of equilibrium in each sub-
system.

In the examples below, the reservoir coupling will not
commute with the Hamiltonian, and the system will mediate
energy and particle flows between the reservoirs. In this case,
only one extensive energy characterizes the system, and it
must be Legendre dual to some average of the reservoir tem-
peratures. The temperature differences among reservoirs,
however, continue to be independent boundary control pa-
rameters with the same dimensions; what has become of
their duals as we introduced off-diagonal couplings in the
system Hamiltonian? In the dissipative examples here their
duals are energy currents, and the dissipation rate provides
the necessary time dimension to relate energy currents, rather
than energy charges, to temperature-valued boundary con-
trols.

Thermal currents become particularly interesting when
the system Hamiltonian is periodic �on systems either of in-
finite extent or of finite extent, periodically identified�. The
directional symmetry breaking of thermal currents has close
relations to particle flows in Brownian ratchets �14�, which
will be illustrated in one example below. Cyclic thermal cur-
rents capture many properties of the cycles in chemical re-
action graphs first considered by Onsager �10�, and widely
recognized as central to the relation between energy flow and
material cycling in biology and biochemistry �16�. It is in
order to understand how to think about these systems that I
emphasize here the role of thermal currents as state variables
and order parameters of statistically defined dynamical
ground states.

D. Open or closed?

Driven systems of the type considered here are usually
called “open,” to distinguish them from equilibrium systems

that do not support net flows of energy or particles �5�. Be-
cause of the extensive formal equivalence I will demonstrate
between particular driven systems and equilibrium en-
sembles, a more useful distinction between open and closed
is the one that already exists within equilibrium thermody-
namics.

Closed systems are those for which the extremized ther-
modynamic potential is the entropy �22�. Open systems are
those for which any reservoirs are represented only through
their intensive state variables, which act as boundary condi-
tions for the system. The extremized potentials for open sys-
tems are various Legendre transforms of the entropy, such as
the free energies. The same distinction will be salient for the
systems here, and it will be of secondary importance that in
these systems net currents flow through the interfaces with
the reservoirs, while in equilibrium they do not.

As in the equilibrium theory of adiabatic transformations,
to derive the flows generated in open systems from first prin-
ciples, it will be straightforward to convert them into closed
systems by including the reservoir degrees of freedom, and
starting the total system away from equilibrium. While the
exact system� reservoir entropy cannot change in the result-
ing closed system, the coarse-grained entropy which is the
sum of system and reservoir marginal entropies will increase,
and will reproduce as one component the entropy for the
open-system representation.

E. Outline of the paper

The presentation is arranged as follows. I introduce the
model class of linear-dissipative oscillator systems in Sec. II,
and construct formally all the objects needed to understand
their evolution and to demonstrate the claims about entropy
summarized here in the Introduction. A little material on P
representations and path integral Green’s functions is in-
cluded in Sec. II D, which is not strictly needed to under-
stand the main claims of the paper, but which makes inter-
esting connections to field theoretic and effective-potential
methods for studying nonequilibrium systems. This subsec-
tion may be skipped without loss of continuity.

The physics behind the entropy of induced currents is
more intuitively grasped in the simplest nontrivial model of a
two-dimensional oscillator, which is developed in Sec. III.
Both open-system and exact closed-system solutions are de-
veloped, to demonstrate the emergence of dissipation in a
linear system.

Section IV presents a somewhat richer example motivated
by Brownian ratchets. This steady-state ratchet, driven by a
temperature heterogeneity, exhibits directional symmetry
breaking by currents in response to reflection asymmetry of
the system potential, and provides a very simple example of
Onsager’s cycling of internal system currents in response to
flow between external reservoirs.

To close the derivation Sec. V returns to general forms, to
check that the results shown for the exact entropy lead to
distributions that reproduce Onsager’s relation for production
of the coarse-grained entropy, when the exact distribution is
replaced by a product of its marginals. Section VI then offers
summary and conclusions, and a brief appendix derives the
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exact entropy state function and the entropy differences rel-
evant to coarse graining, by a variant on the replica trick.

II. LINEAR-DISSIPATIVE DRIVEN SYSTEMS

A. Choosing a model class

I wish to consider systems in the so-called “Onsager re-
gime” of linear current response �10� to heterogeneous
boundary potentials. Examples are Ohm’s law for electrical
conduction �one-dimensional� and Fourier’s law for heat
flow �diffusion in arbitrary dimension�. The simplest models
capable of capturing the essential features of dissipation and
linear response, while abstracting away all other details of
Fermion conduction, spatial versus graph topology, etc., are
systems of linear quantum harmonic oscillators, coupled lin-
early to reservoirs which are themselves systems of linear
quantum harmonic oscillators. It is easy to give such models
significant structure, they are exactly solvable, and they have
been extensively studied in the quantum optics literature
�15�, as systems in which dissipation by quantum decoher-
ence can be derived from first principles.

The basic structure in the quantum optics models is a
Fock space of kinematically independent bosonic excitations,
which in a second-quantized framework have the interpreta-
tion of particles, or in a first-quantized framework, of energy
excitations of a particle in a potential well. I will draw from
either representation freely in descriptions. My interest is not
in quantum optics per se, and the structures I will use as
examples are different from those considered in standard
models of optical cavities. Engineered quantum optical sys-
tems would, however, provide an easy testing ground for
these ideas, where their range of validity is well understood.

The use of quantum models offers the advantage that cur-
rents have a definition as phase-coherent structures indepen-
dent from charges. This will allow us to recognize current-
valued state variables as independent entities, not defined
merely through linear functions of charge differences as in
the conventional Onsager relations, or through conservation
laws from time derivatives of charges, which appear as op-
erator relations in the quantum theory. Though none of the
macroscopic observables is itself a quantum-coherent object,
this raises a caution that these simple models could be inad-
equate for application to chemistry �in particular in solution�,
where the fundamental excitations in any similarly abstract
description would be required to represent complex quasipar-
ticles among which phase coherence could be irrelevant.

I am thus assuming that, more than just a phenomenologi-
cal category, Onsager linear response defines a statistical uni-
versality class and that the algebra of discrete linear oscilla-
tors provides a simplest instance in which to study it. That
linear dissipation defines a universality class within these
models, independent of most details of reservoir coupling or
dimension, is already established �15�. I will work only in
the high-temperature regime where Bose statistics are indis-
tinguishable from Boltzmann to whatever approximation I
require, leaving unaddressed whether a map to the same limit
can be made for driven Fermi liquids, mechanical Brownian
ratchets, chemical transformations, or other specific applica-
tions.

B. Fock space for extended systems

The physical state space of a system with D internal de-
grees of freedom then results from the action of D orthogo-
nal creation and annihilation operators starting from a
ground �ket� state �0�. They have commutation relations
�a� ,a�

†�=��
� ,� ,��1, . . . ,D. The system has a “spatial” ba-

sis indexed i, in which reservoir coupling is diagonal, and a
�generally different� basis indexed � in which the Hamil-
tonian is diagonal.

In any basis, the diagonal elements of the dyadic matrix
operator n̂�a†a �i.e., �n̂�

����a�
†a��� constitute a set of the

independent number components in the Fock space. The

Hamiltonian �up to constants� is written Ĥ�Tr�En̂�, with
eigenvalues E�

� ���
� E���. Eigenstates of the number opera-

tors take the form

�n�� � �
�=1

D �a�
† �n�

	n�!
�0� , �1�

where n� denotes the vector of components �n��.
For a column vector ������ of complex scalars, a general

coherent state for the system is compactly written

��� � e−��†��/2

N=0

�
�a† · ��N

N!
�0� . �2�

Density matrices diagonal in the �overcomplete� set of coher-
ent states constitute a sufficient representation for general
well-behaved finite-temperature systems �15�, and a particu-
larly simple subset of them describe locally-thermal dissipa-
tive dynamical systems.

The subset, which I will call Gaussian-coherent en-
sembles, are conveniently written in the Glauber-Sudarshan
“P representation” �15�

� =� d�†d�

	D P��†,�������� �3�

with the kernel P��† ,�� taken to be the Gaussian form

P��†,�� � Det�K�e−�†K�, �4�

with K a D�D Hermitian matrix with only positive eigen-
values. The marginal distributions for any single degree of
freedom P
�n
��Tr���n
��n
�� in a Gaussian-coherent en-
semble are exponential in n
 in any basis �3�. They include
the equilibrium thermal distributions �K�

����
��e�E��� −1��,

but also time-dependent distributions created by linear dissi-
pation, which exactly preserves Gaussian-coherent form.
Thus these ensembles satisfy the usual assumption �8� that
any single degree of freedom is distributed according to an
internal energy state variable and a Gibbs distribution
equivalent to those of an equilibrium. However, phase corre-
lations between degrees of freedom responsible for time de-
pendence will not be ignorable. Whether or not the ensemble
is thermal, The matrix K is the inverse expected number
operator
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n � Tr��n̂� = K−1. �5�

I will show below that the components of n, or equivalently
of K, are the state variables of the system, and that the asym-
metric off-diagonal elements measure macroscopic currents.

C. Linear-dissipative evolution

At first I will not represent the reservoirs explicitly, but
rather introduce linear dissipation in this class of models
through the phenomenological equation for evolution of the
classical number matrix

dn

dt
= i�E,n� + r�nR − n� . �6�

The system loses particles in proportion to the number
present at rate r, and gains them from the separate compo-
nents of the reservoir in proportion to the classical number
matrix nR, which for convenience I will take to be time in-
dependent �a reservoir stability assumption�. Equation �6�
arises as a universal form from decoherence of exact models
�15�, contributing to the view of linear response as a univer-
sality class.

Through Eq. �5�, linear evolution of n implies

dK

dt
= i�E,K� + rK − rKnRK , �7�

which may be converted to a Fokker-Planck equation on P of
the form

�P

�t
= 
rD + i���

* E�
� �

���
* − ��E�

� �

���� +
r

2
���

* �

���
* + �� �

����
+ r�nR��

� �

���
*

�

����P . �8�

Integration by parts produces an equation for the density in
which the Fokker-Planck operator acts on states

��

�t
=� d�†d�

	D P��†,��
i���E�
� �

��� − ��
* E�

� �

���
*�

−
r

2
���

* �

���
* + �� �

���� + r�nR��
� �

���
*

�

���������� , �9�

and that in turn is readily converted to the operator form

��

�t
= i�Ĥ,��

−
r

2
�N̂,�� + ra��a�

†

− r��̂R,�� − r Tr�nR�� + r�nR��
� �a�

†�a� + a��a�
†� .

�10�

N̂�Tr�n̂�=a�
† a�, is the total number operator, and �̂R

�Tr�n̂nR�=a�
†�nR��

� a� is a source of particles from the reser-
voirs. In the so-called “rotating wave approximation” �RWA�
derivation �15� of Eq. �10� from the Born approximation on

reservoirs that are also systems of oscillators, nR arises as the
expectation of the number operators for those reservoir com-
ponents coupled to the system.

The first line of Eq. �10� is standard unitary evolution
within the system, the second line contains all terms for par-
ticle loss to the reservoirs, and the third line contains terms
for gain from the reservoirs. It is straightforward to check
that each line individually is trace preserving.

D. Path integral evolution of the kernel

The P representation is so named because P resembles a
probability density on classical phase space, except that
��† ,�� are overcomplete and P need not be positive every-
where �though for Gaussian-coherent ensembles it is�. Thus
it is not surprising that dual to the operator evolution equa-
tion �10�, one can construct a path integral Green’s function,
in which the decoherence terms have relations to the
Onsager-Machlup effective action �17�, and possibly to the
time-loop S matrix as it would be inserted in a finite-
temperature field theory �1,3�.

One begins with a Gaussian integral relating Pt+�t to Pt
for some short time interval �t. Denote dummy variables of
integration at t+�t by �1

† ,�1, and those at t by �0
† ,�0. For a

general �nondegenerate� matrix a, not a function of the vari-
ables of integration, completing the square shows that

Pa��1
†,�1� � Det�a−1� � d�0

†d�0

	D exp�− ��1 − e�iE−r/2��t�0�†

�a−1��1 − e�iE−r/2��t�0��Pt��0
†,�0� �11�

has the structure of Eq. �4�, with kernel

Ka
−1 = e�iE−r/2��tKt

−1e�−iE−r/2��t + a . �12�

If we take a=r�tnR, we may identify Ka with Kt+�t, with
inverse nt+�t. Taking �nt+�t−nt� /�t→dn /dt since n evolves
smoothly, recovers Eq. �6�. With this choice, if we also de-

note ��1−�0� /�t→d� /dt� �̇ �as long as we remember that �
fluctuates as a Brownian and not a smoothly differentiable
field in defining the measure�, and drop the subscript 0, we
can write

��1 − e�iE−r/2��t�0�† �nR�−1

r�t
��1 − e�iE−r/2��t�0�

→
�t

r
��̇ − �iE − r/2���†�nR�−1��̇ − �iE − r/2��� . �13�

Define a skeletonized measure for C-number paths �t
† ,�t

then as follows: For T�M�t, denote

��T
†,�T

DR�†DR� � �
m=0

M−1

Det� �nR�−1

r�t
� � d�m�t

† d�m�t

	D .

�14�

By iterating Eq. �11�, we can write
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PT��T
†,�T� = ��T

†,�T
DR�†DR�

�exp�−
1

r
� dt��̇ − �iE − r/2���†�nR�−1

���̇ − �iE − r/2����P0��0
†,�0� �15�

The time-dependent density follows from Eq. �15� as

�T =� d�T
†d�T

	D PT��T
†,�T���T���T� . �16�

The three lines of Eq. �10� reappear in Eq. �15� as three
distinct kinds of transformations on �. The imaginary rota-
tion iE� is the familiar action of Hamiltonian evolution on
coherent states. −r� /2 contracts the number insertion �dyadic
matrix� ��† at rate r��† in the state relative to the kernel,
while Gaussian integration over kernel �rnR�−1 introduces
particles by admitting fluctuations of ��† at rate rnR. All of
these are weight preserving �because the coherent states are
normalized�, so they preserve trace.

The quadratic form in �̇ and � in Eq. �15� resembles a
quantum version of the Onsager-Machlup effective potential
�17�, in which rnR is the correlation function of a Langevin
field. At the same time, � as the eigenvector of the annihila-
tion operator gives the path for �t the interpretation of a
forward time-evolved state, and the reversed path for �t

† the
interpretation of a backward-evolving Hermitian conjugate.
The resulting path integral over �t and �t

† resembles a time-
loop S matrix for the computation of time-dependent corre-
lations at finite temperature �3�, except that the insertion rnR
creates a partial trace between the field and its conjugate
within each interval of time, which is absent from coherent
quantum evolution. Equation �15� thus suggests that at least
some linear dissipative systems may have a compact path
integral description that systematically generalizes from the
Matsubara construction for equilibrium density matrices
�18�.

E. The generation of currents

The phenomenon of “spontaneous emergence of currents”
occurs if the reservoir components do not couple directly to
current-valued excitations in the system, but only to charges,
yet the combination of system dynamics with dissipative
coupling to the reservoirs leads to the presence of macro-
scopic currents in �. Formally this is achieved if �E ,nR��0,
but nR is real valued and symmetric when written in the
eigenbasis of E. The off-diagonal components of nR measure
charge asymmetries the reservoirs attempt to impose on the
system, or equivalently in the quantum language, phase cor-
relations the reservoir coupling attempts to maintain between
system eigenvectors of different frequency.

The linear evolution equation �6� is readily solved over
any time interval with arbitrary nR, but it suffices here to
consider constant nR and late times, where n approaches an
asymptotic value n̄ given by

n̄ = �
0

�

rdte−rteiEtnRe−iEt. �17�

In components in the Eigenbasis of the Hamiltonian

�n̄��
� =

�nR��
�

1 − i�E��� − E����/r
. �18�

If nR is real and symmetric, n̄ takes on imaginary, asymmet-
ric components proportional to the off-diagonal charge com-
ponents of nR. The imaginary components vanish at r→�,
and all off-diagonal components vanish at r→0. Whereas
real, symmetric off-diagonal components of n̄ represent
standing-wave combinations of eigenvectors, imaginary, off-
diagonal components represent traveling waves.

F. Entropy, partition function, and free energy

The Gaussian-coherent ensembles are minimal generali-
zations of Gibbs equilibria. Not only are the single degree-
of-freedom marginal distributions exponential, but the defi-
nition of entropy in terms of the quantum density matrix is
the same as that for an equilibrium ensemble, and has an
elementary evaluation in terms of the classical state vari-
ables.

The Appendix shows that the exact entropy has the
von Neumann form

S��� � − Tr�� ln �� = Tr��I + n�ln�I + n� − n ln n� , �19�

�in which parentheses denote density matrix trace, and
square brackets the scalar matrix trace over index ��.
Gaussian-coherent ensembles are specified among general
density matrices � by standard Jaynesian entropy maximiza-
tion �7�

��,
�S��� − Tr�
�Tr��n̂� − K−1��� = 0, �20�

where 
 is a matrix of Lagrange multipliers enforcing a con-
straint on the trace of the number operator n̂. It is the role of
K−1 as the trace constraint value that identifies its compo-
nents as the extensive state variables of the system. The par-
tition function of the distribution �3� and �4� is indistinguish-
able from that for a tensor product of thermal states
�diagonalize K�, and evaluates to

ln Z = Tr�ln�I + n�� = S�n� − Tr
n
�S�n�

�n
� . �21�

−ln Z is the Legendre transform of the entropy to a function
of the intensive state variables �S�n� /�n, though I will show
below that a subset of these variables, carrying the boundary
temperatures, are the actual control parameters on the sys-
tem.

The entropy �19� evolves under Eq. �6� as
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d

dt
S��� = − rTr
�n − nR�

�S

�n
�

= rTr��� − �R�ln �� = r����;�R� − S��� + S��R�� ,

�22�

where ��� ;�R� is the Kullback-Leibler divergence �19� �also
derived using the Appendix �

���;�R� � Tr��R�ln �R − ln ���

= Tr��I + nR�ln�I + n��I + nR�−1 − nR ln nnR
−1� ,

�23�

and �R is to be understood as the Gaussian-coherent en-
semble the reservoirs would impose through nR if �E ,nR�
were zero. The steady state condition dS /dt=0 is equivalent
to the condition S���−S��R�=��� ;�R� that � be a coarse
graining of �R �13�.

From Eqs. �18� and �22� we obtain the first two main
claims of the paper. First, the spontaneous generation of cur-
rents can increase the exact entropy of a well-defined en-
semble description of the system, relative to the reference
entropy associated with the boundary charge distribution nR.
Second, though the entropy of n̄ is greater than that of nR, it
is still less than that of an equilibrium ensemble with the
same average energy for each eigenvector, as would be ob-
tained from the diagonal components of n̄ �or nR, which are
the same�, acting alone. This intuitive result says that the
imposition of more constraints than just average energy by
the boundary conditions can only decrease our uncertainty
relative to an equilibrium ensemble, but that the extensive
state variable on which the entropy reduction depends gen-
erally has both charge and current components.

Geometrically, we may understand how � can be a coarse
graining of �R by observing that nR= n̄− i�E , n̄� /r is in the
tangent plane to the surface �S=0 at n̄. nR− n̄ is proportional
to the vector i�E , n̄�, tangent to �S=0 because unitary evolu-
tion exactly preserves S. I will illustrate this graphically in
the specific coordinates of the two-dimensional oscillator ex-
ample of Sec. III.

G. Dual structure of the driven system

The ensemble description in which the reservoirs are
treated phenomenologically, through the extensive state vari-
ables nR or their dual intensive variables �S�nR� /�nR, is an
open-system description, in which the system entropy is
maximized subject to a normal-derivative constraint. The
thermodynamic potential whose extremum determines the
stationary response should thus be the formal equivalent of a
Helmholtz potential, rather than the entropy alone. To under-
stand what happens to the dual structure when the reservoir
coupling does not commute with the Hamiltonian, we return
to the question of how many Lagrange multipliers are actu-
ally needed to specify a distribution �, from the full set in-
troduced in Eq. �20�.

For a general solution n� of Eq. �6�, define

�� �
�S�n��

�n�

= ln�I + n�
−1� , �24�

the outward normal to the surface �S=0 at n�. All moments
Tr��n̂� of the maximum-entropy distribution with intensive
state �� are fixed by maximizing S��� subject to the single
constraint Tr��Tr��n̂�−n�����=0, because the set �S�0
from any n� is convex. Entropy maximization with one
Lagrange multiplier for an extensive trace constraint

��,
�
�S��� − 
��Tr�Tr�n̂����� − Tr�n�����‰ = 0, �25�

is thus a sufficient principle to extract ��n��, but fails to cap-
ture the physical role of the temperatures in the reservoir as
independently specified intensive state variables.

In general, that role is nonlinear and difficult to extract,
but it becomes simple in the Onsager regime of high tem-
perature and weak perturbation away from equilibrium. Sup-
pose, for example, that the trace constraint on nR comes from
average energy and some other �nondiagonal� charge matrix

Q. Suppose also a high temperature �̄E����1, and weak per-

turbation ��Q��� / �̄E����1, for all eigenvalues E��� of E and
Q��� of Q. With these trace constraints, we may expand nR to
leading order

nR = �e�̄E+��Q − 1�−1 �
E−1

�̄
−

E−1

�̄
��Q

E−1

�̄
. �26�

Under Eq. �6� we may then write

n �
E−1

�̄
−

E−1

�̄
��J

E−1

�̄
� �e�̄E+��J − 1�−1, �27�

as long as

dJ

dt
= i�E,J� + r�Q − J� . �28�

If we think of Q as denominated in energy units,

1 / ��̄�����kT± are the two temperature parameters repre-
sented in the environment. Dual to the average temperature

1/ �̄ is an average energy

Tr�nE� = Tr�nRE� � E �29�

�equal in n̄ and nR�, and dual to �� / �̄2 is a new trace

Tr�nJ� � J . �30�

Denoting the Hermitian operators formed from Q and J Q̂

�Tr�Qn̂� and Ĵ�Tr�Jn̂� respectively, the steady state distri-
bution solves the maximization problem

��,
,
��S��� − 
�Tr�Ĥ�� − E� − 
��Tr�Ĵ�� − J�� = 0.

�31�

Dual to entropy maximization �31� under extensive state
variable constraints is the minimization with intensive con-
straints
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����̄ Tr�Ĥ�� + �� Tr�Ĵ�� − S���� = 0. �32�

Reducing to the residual dependence on n, we recognize that
this is the minimization of the log inverse partition function
�21�

�n�− ln Z� = �n�Tr���̄E + ��J�n� − S�n�� = 0, �33�

equivalent to minimization of the Helmholtz free energy for
the equilibrium canonical ensemble, which was the third
main claim of the paper.

The relations �31�–�33�, while derived for a carefully se-
lected model class, are macroscopic relations among the
classical state variables of a system, with standard thermo-
dynamic form. Moreover they preserve the definitions of the
charge-valued state variables from equilibrium, and their re-
lations to the local distributions of charge-valued excitations
as usually assumed in nonequilibrium thermodynamics. To
these they add only independently defined current-valued
state variables and a refined derivation of the entropy, both
features approximated away but not ruled out by the com-
monly made coarse-grainings. These may thus be general
relations within the Onsager linear-response universality
class, or they may define a subclass within the larger set of
systems considered equivalent by Onsager.

III. THE TWO-DIMENSIONAL OSCILLATOR

A. The minimal nontrivial case

In a linear system all currents are ultimately generated
through coupling of pairs of eigenvalues, per Eq. �18� or its
time-dependent generalizations. Therefore they are most
simply seen in a system with D=2, and Hamiltonian defined
from

E = 
Ex

Ey
� , �34�

with Ex�Ey. General Hermitian n take the form

n = 
 n0 + n3 n1 + in2

n1 − in2 n0 − n3
� , �35�

with coefficients related to the physical state basis of Fig. 1
by 2n3=nx−ny, 2n1=nu−nv, 2n2=n+−n−. The transformation
of annihilation operators from basis x ,y to basis u ,v is


au

av
� =

1
	2

1 1

1 − 1
�
ax

ay
� . �36�

The transformation to basis � is


a+

a−
� =

1
	2

1 i

1 − i
�
ax

ay
� , �37�

and the creation operators are defined by conjugation.
If by convention n�x,y� and n�u,v� refer to standing waves

�whose densities are charges�, n± are traveling waves �whose
densities are currents�. By symmetry the entropy �19� is pre-
served under arbitrary similarity transformation of n by ele-
ments of SU�2�, illustrating most clearly why, if the equilib-

rium entropy is a function of charge asymmetries, its
dynamical generalization must be the properly symmetrized
function of both charge and current asymmetries.

Hamiltonian evolution preserves n0 and n3, and cycles net
charge and current excesses in time as

�n1 + in2�t = ei�Ex−Ey�t�n1 + in2�0. �38�

A picture of �S=0 and a Hamiltonian orbit within it is given
in Fig. 2, for an arbitrary fixed value of n3.

The set of coarse grainings of real nR preserving n0 and n3
is given by �n1+ in2�
= �nR�1 / �1− i
� for real 
, and shown in
Fig. 3. By Eq. �18� for n̄, we solve for 
= �Ex−Ey� /r. The
current magnitude �n̄2� is maximized at r2= �Ex−Ey�2, repro-
ducing a common feature of driven dissipative systems, that

FIG. 1. Three bases for the two-dimensional oscillator. xy
�solid� is the eigenbasis of the Hamiltonian. uv �dash� is the “spa-
tial” basis in which a thermal asymmetry is imposed by nR. �
�dotted� is the current basis excited spontaneously, and switched
under time reversal.

FIG. 2. A characteristic surface �S=0 �the surface obtained by
rotating the thin curve about its axis of symmetry� and within it a
Hamiltonian orbit �heavy line; the direction of the arrow corre-
sponds to Ex�Ey�. The fixed points of Hamiltonian evolution are
the axis n1 ,n2=0.
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currents are maximized when the characteristic timescales of
coherent transport and dissipation are comparable.

B. Exact solutions

As with the adiabatic transformations considered in equi-
librium thermodynamics, it is possible to replace the classi-
cal boundary conditions and open system with an explicit
treatment of the system and reservoirs as a larger closed
system, with nonequilibrium initial conditions and finite-rate
relaxation. For D=2 the exact solution is simple enough that,
rather than use a Born approximation, we may generate dis-
sipation by first evolving the whole system and then tracing
over all of the reservoir degrees of freedom.

Denote a Hamiltonian for the �system � reservoir� de-
grees of freedom

�̂ �
 Ĥ ĝ

ĝ† ĤR

� , �39�

where ĤR is the �Hermitian� Hamiltonian over the reservoir
degrees of freedom �block diagonal if the reservoir has sepa-
rated components�, and ĝ is the vector of system/reservoir
exchange terms. The Hamiltonian �39� comes from the cou-
pling matrix

� � 
E g

g† ER
� . �40�

Similarly, decompose the Hermitian matrix K for an arbi-
trary Gaussian-coherent ensemble for the system � reservoir
as

K � 
K b

b† C
� . �41�

For the dynamics here we imagine C block-diagonal, with
the two blocks initially representing thermal distributions at
different temperatures. K evolves under

dK
dt

= i��,K� . �42�

If we trace over reservoir degrees of freedom, the effective
matrix for the system is not simply K, but the result of com-
pleting the square in the integrated reservoir coherent-state
variables

Keff = K − bC−1b†, �43�

at each instant of time.
Figure 4 shows the topology of a sample system, in which

the u ,v system oscillators are coupled randomly to two res-
ervoir blocks, each of which has random internal couplings
to produce a dense band of states of average energy �Ex

+Ey� /2. Figure 5 shows the three independent components
of the system n inverse to Keff from Eq. �43�, and the average
particle number in each reservoir �total number divided by
number of reservoir sites�, averaged over 50 random instan-
tiations of the couplings.

The system rapidly converges on a fixed ratio of n+−n− to
nu−nv, and of both relative to �nR�u− �nR�v, which shows the
slow decay of the reservoir temperature difference due to
particle exchange. On longer times cales, the numbers nx and
ny, initially set equal, approach their unequal thermal values
at the mean temperature, satisfying Exnx=Eyny.

IV. A SPATIALLY EXTENDED RATCHET

Driving with temperature rather than mechanics

The Brownian ratchet, originally conceived as a model of
biological symmetry breaking in systems such as muscle fi-

FIG. 3. End view corresponding to Fig. 2, showing coarse grain-
ings from charges n1 to linear combinations n1+ in2 of charges and
currents. Concentric circles are Hamiltonian orbits, and dashed
circle is the set of coarse grainings from given �nR�1. The angle 

obeys tan 
=1/
=r / �Ex−Ey�.

FIG. 4. A D=2 system coupled randomly to two reservoir
blocks. Dashed lines represent random couplings g between modes
u or v and all sites in their respective reservoirs �only a subset
shown�. Dotted lines represent random couplings off diagonal in ER

spanning all pairs of sites in each reservoir block �subset shown�. In
the numerical example each reservoir has 36 sites, and both the
cross-site couplings in ER and the system/reservoir exchange g are
drawn from uniform distributions in magnitude and phase, over a
range adjusted to “impedance match” the system to the reservoirs
for rapid phase decoherence and reservoir equalization. Reservoir
blocks are initially given equilibrium thermal distributions at the
temperatures T0 indicated, in units where �Ex+Ey� /2=1.
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bers �14�, converts mechanical energy to an asymmetric par-
ticle current. An asymmetric sawtooth potential for a gas of
particles is turned on and off, and the particles congregate
asymmetrically in wells when the potential is on, and diffuse
symmetrically when it is off, generating net current flow
down the shallower gradient of the sawtooth.

A related notion of ratchet may be used to drive an asym-
metric and even cyclic current in response to a steady state
but spatially inhomogeneous temperature field. The ratchet
consists of D sites uniformly distributed in a spatial interval
x� �−	 ,	�, which may be periodically identified or a single
period in an extended space. The system Hamiltonian, given
by

Ĥ � 

i=1

D �1 −
V

2
xi�ai

†ai −
h

2
�ai+1

† ai + ai−1
† ai� , �44�

has a site-diagonal energy profile shown in Fig. 6, and uni-
form nearest-neighbor hopping of strength h.

The lattice sites are excited by an external temperature
profile

Ti = T̄ + �T sin xi. �45�

The parameters T̄ and �T are the intensive state variables
used to control the system. Roughly, the high-temperature
region excites symmetric particle hopping. Particles that hop
to the nearby energy peak are quenched, and diffuse prefer-
entially down the gradient to make one cycle of the potential
well, generating a net positive-sense current. Though the
source of energy in the thermal and mechanical ratchets is
different, the combined elevation of a subset of particles
from the well to the peak, and their subsequent adiabatic drift
under dissipation, are the common elements responsible for
directional symmetry breaking.

In this ratchet, currents are generated by the traveling
waves whose creation and annihilation operators are the Fou-
rier transforms of the site-diagonal operators. We can resolve
the net particle current into components, each proportional to
the mean excitation number of its associated Fourier mode.
Excitation numbers are graphed versus wave-number index
and dissipation rate r in Fig. 7. The profile of excitation is
roughly sinusoidal in wave number, and the current asymme-
try in all modes is maximized when r is comparable to the

difference in the eigenvalues of Ĥ.
Though it is unnecessary for a linear system, it is relevant

to more complex cases to note that the steady-state currents
in a system of this type can be estimated perturbatively. The
integral solution �17� for n̄ has a geometric power-series ex-
pansion in commutators

FIG. 5. Particle numbers in the three bases of the two-
dimensional oscillator, and in the two reservoir components. �Ex

+Ey� /2=1, and Ex−Ey =0.025, so that the period of free oscillation
in the system is 2	 /0.025�251. Curves represent an average over
50 random instantiations of reservoir-internal and system-reservoir
couplings.

FIG. 6. Site-diagonal potential �top� and temperature profile
�bottom� of a thermal ratchet. Abscissa is the space coordinate; D
�here 5� sites are the little circles, drawn at position xi and height
representing the energy �1−Vxi /2�. The two intensive boundary

constraints on this quasithermal ensemble are T̄ and �T. Tempera-
tures, similar to the potential, are only evaluated at the xi.

FIG. 7. The diagonal of n̄ in a wavenumber basis, versus dissi-
pation rate r. Typical eigenvalue differences �E���−E�����0.1 for
these parameters, and maximal currents occur around r�10−1.7.
The profile in wavenumber is roughly sinusoidal.
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n̄ � nR + 
 iE

r
,nR� + 
 iE

r
,
 iE

r
,nR�� + ¯ , �46�

which converges for sufficiently large r. No current appears
before the third order, corresponding to a vertex in which the
mode-one temperature profile and mode-one component of
the potential couple to the mode-two component of the po-
tential. �Thus wave numbers sum to zero in the three-point
vertex, leaving a mode-zero net current.� The leading Fourier
expansion of the potential

V

2
xi � V�sin xi −

1

2
sin 2xi� �47�

therefore produces the leading term in the perturbative solu-
tion for the currents.

Nothing about the thermal ratchet model implies math-
ematically that the sites are spatial positions. It therefore
serves also as a poor-man’s model of Onsager cycling in a
chemical reaction graph �10�. In this interpretation, sites are
chemical species that may contain some functional group or
atomic cluster of interest, and particles are the groups or
clusters that move among sites through chemical reactions.
Thermal excitation is a proxy �often poor� for activation of
functional groups that enables them to participate in reac-
tions, though it might be a more appropriate model for light-
induced charge separation, as occurs in recyclable photosyn-
thetic pigments �20�. More realistic models of chemical
cycling can readily be built field-theoretically, but their solu-
tion and the computation of appropriate entropies is no
longer simple.

V. THE PHENOMENOLOGICAL PRINCIPLES
FOR COARSE-GRAINED ENTROPY

To emphasize that these results for the exact entropy in no
way contradict results of phenomenological theories such as
Onsager’s maximum �coarse-grained� entropy production,
we may check that the latter is recovered if we coarse-grain
the exact distribution for the Gaussian-coherent ensemble.
Because the operation of projecting the exact distribution
onto the product of its marginals causes system and reservoir
components to appear to each other only through their inten-
sive state variables, the Onsager relation in fact follows from
minimization of the generalized exact free energies �33� in
the linear-current regime.

Full coarse-graining in these models would be achieved
by projecting � onto its diagonal components �̃ in a Fock
space over independent number excitations. The resulting
coarse-grained entropy would then be function of the charge-
valued state variables only. As we have only introduced no-
tation and derived linear particle exchange for factoring the
�system � reservoir� distribution into independent marginals,
that partition will be used as an example. It simplifies the
presentation to consider the reservoir a unified system in its
own right �rather than a set of independent components�,
with state variable nR, and distribution �R extremized as in

Eq. �33�, except with trace constraint �̄E+��Q, for consis-
tency with Eq. �26�. Label the reservoir partition function ZR,

and its entropy SR computed from �R as for S���. Let overdot
denote time differentiation. Then consider the potential

d

dt
ln�ZZR� = Ṡ − Tr���̄E + ��J�ṅ − ��J̇n�

+ ṠR − Tr���̄E + ��Q�ṅR − ��Q̇nR� . �48�

Use Eq. �28� to evaluate J̇, and by symmetric treatment of

system and reservoir let Q̇=r�J−Q� �taking the reservoir en-
ergy diagonal in nR purely for convenience�. In terms of
currents defined phenomenologically from n and nR,

j � ṅ − i�E,n� , �49�

and jR� ṅR, we may then write Eq. �48� as

d

dt
ln�ZZR� = Tr
��S

�n
− �̄E − ��J� j + ��SR

�nR
− �̄E − ��Q� jR

− ���J − Q��n − nR�� . �50�

Maximization of ln Z and ln ZR at each time is equivalent to
saddle-point extremization of Eq. �50�, maximizing in j and
jR, minimizing in n and nR.

For high temperatures and linear perturbations it is con-

venient to write n= ��̄E�−1+�n, nR= ��̄E�−1+�nR, and Eq.
�50� is readily expressed to leading order as a difference of
quadratic forms in these variables. Variation with �n+�nR
then sets j+ jR=0, and variation with j+ jR recovers the sum
of forms �26� and �27�. Variation with �n−�nR gives �n
−�nR in terms of j− jR, recovering the linear dissipation rule.
Evaluating Eq. �50� on these three extrema leaves the func-
tion of �j− jR� /2→ j:

d

dt
ln�ZZR� = 4rTr
���Q − J�j −

1

2r
��̄E�j��̄E�j�

+ r�2r − 1�Tr���̄E����Q − J���̄E����Q − J�� .

�51�

The linear form Tr����Q−J�j� is Onsager’s “entropy produc-
tion rate,” with the difference of inverse temperatures ���Q
−J� regarded as constants under variation, while

��j, j� �
1

2r
Tr���̄E�j��̄E�j� �52�

is the phenomenological “dissipation function” �10�. Under
complete coarse-graining of both system and reservoirs, the
single function �51� would expand into the structure of
physical diffusion currents determined by the Hamiltonian,
though the resulting coarse-grained entropy, even within the
system, would progressively diverge from the exact value
�19�.

VI. CONCLUDING REMARKS

This paper has demonstrated some features of entropy,
and some roles for it in explaining the order in dissipative
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systems, which appear not to have been recognized before,
due to a heavy reliance on equilibrium state variables and
state relations in most descriptions of systems whose mi-
crostatistics locally resemble those of equilibria. Quantum-
mechanical examples have been ideal to illustrate these roles,
because they provide principled definitions of currents and
charges as independent excitations, and because the entropy
of the quantum density matrix remains well defined whether
or not the system in question sustains macroscopic currents.
This has enabled exact computation of the dependence of a
well-defined entropy measure on currents, which is sup-
ported by physical intuition because of the intrinsic symme-
try between charge and current excitations in quantum state
representations.

The particular choice to study Gaussian-coherent en-
sembles provided us with systems whose local excitations
satisfy exactly the equilibriumlike state relations usually as-
sumed, allowing us at the same time to quantify the error
made by ignoring the correlations between local regions as is
done by restricting to the use of equilibrium state variables
alone. We have therefore seen that these correlations, which
in quantum theory are precisely the source of macroscopic
currents, also carry the entropy whose maximization explains
the emergence and stability of the currents, within a standard
Jaynesian formulation of statistical mechanics.

The choice to consider linear quantum models has made
possible exact solutions and first-principles derivations of
dissipation, but it has left two important questions about the
range of applicability of these results as general principles.
One is whether the methods for deriving exact entropies used
here, or those in previous work on nonlinear but nondissipa-
tive systems �2� �for which entropy is implicitly given by the
partition function�, can be extended to nonlinear dissipative
systems. These results are probably a good description, with
minor corrections, for Fourier heat laws or Ohm’s law. At the
same time, nonlinear feedbacks, dynamical phase transitions,
and far-from-equilibrium steady states �however treated� are
certainly at the heart of the applications that aren’t trivial to
understand with phenomenological laws, and the test of these
methods will ultimately be their ability to predict the prop-
erties of such systems.

The other question is whether the notion of a current-
dependent dynamical entropy remains useful for complex
processes such as chemical reactions in solution, where the
fundamental particles may not be quantum coherent at the
level of abstraction appropriate to these arguments, and the
definitions of currents as independent excitations is more
problematic. I am optimistic that chemistry remains within
this regime, because chemistry lies between two regimes in
which currents and their entropies are well defined. One is
the quantum-coherent regime studied in this paper. The other
is the regime of classical mechanics, where probability den-
sities on phase space have well-defined Shannon entropies if
the phase-space measure is given �12�. While the Gibbs dis-
tribution has no net currents, it is sensible classically to de-
fine distributions with other constrained boundaries, which
do. Classical Hamiltonian phase space dynamics is a fully
decohered regime of long-range inertial correlation, rather
than short-range quantum phase correlation. The P represen-
tation in some sense bridges these two regimes, mapping

phase correlation in quantum mechanics onto phase-space
correlations in P��† ,��. The question to answer for diffusive
chemistry is whether, perhaps lacking both quantum phase
coherence and long-range phase-space coherence, it still lies
under this bridge between them.
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APPENDIX: CALCULATION OF ENTROPIES
AND KULLBACK-LEIBLER MEASURES

Analytic continuation in powers of densities, akin to rep-
lica methods �4� for handling quenched randomness, provide
a simple derivation of the von Neumann formula for the
entropy in Gaussian-coherent ensembles, and the equivalent
form for the Kullback-Leibler divergence.

1. Integer-number products of densities

Begin by computing traces of powers of density matrices

Tr��1 ¯ �m� = �
i=1

m

Det�Ki� � d�i
†d�i

	D ��0��1� ¯ ��m��0�

�e−
i=1
m �i

†Ki�i. �A1�

From the commutation relations of the raising and lowering
operators, it follows that

��i�� j� = e�i
†�j−��i

†�i+�j
†�j�/2, �A2�

so that

Tr��1 . . . �m� =
�i=1

m
Det�Ki�

Det�A�
, �A3�

where

A ��
A1 − I

A2 − I

� �

Am−1 − I

− I Am

� , �A4�

in which the diagonal blocks are Ai�Ki+ I, and I is the D
�D identity matrix. Decomposing any vector transformed
by A into block form

v � �v1

]

vm
� , �A5�

the definition of an eigenvector of A may be put into m
alternate forms equivalent to
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Av = 
v ⇔ �Am − 
� ¯ �A1 − 
�v1 = v1. �A6�

Thus the characteristic polynomial has the equivalent repre-
sentations

Det�A − 
� = Det��Am − 
� ¯ �A1 − 
� − I� = 0. �A7�

Since the coefficient of the highest-order term 
mD is one in
both expressions in Eq. �A7�, the polynomials have the same
scale, and therefore the same constant term

Det�A� = Det�Am ¯ A1 − I� . �A8�

The trace �A3� is then written

Tr��1 ¯ �m� =
�i=1

m
Det�Ki�

Det��Km + I� ¯ �K1 + I� − I�
. �A9�

2. Replica calculation of entropies and Kullback-Leibler
measures

Next represent the logarithm as the analytic continuation
of a function of the power p to which a density is raised:

ln � = lim
p→0

1

p
��p − 1� . �A10�

Similarly, for any normalized �i not necessarily equal to � j,
represent

Tr��i ln � j� = lim
p→0

1

p
�Tr��i� j

p� − 1� . �A11�

Using Eq. �A9�, evaluate

Tr��i� j
p� =

Det�Ki�Det�Kj�p

Det��Ki + I��Kj + I�p − I�

= exp„Tr�ln Ki + p ln Kj − ln��Ki + I��Kj + I�p − I��…

= exp†Tr„p ln Kj − ln��I + Ki
−1��I + p ln�Kj + I�

+ ¯ � − Ki
−1�…‡

= exp�pTr�ln Kj − �I + Ki
−1�ln�Kj + I�� + ¯ �

= exp�− pTr��I + Ki
−1�ln�I + Kj

−1� − Ki
−1 ln Kj

−1�

+ . . . � , �A12�

where ellipses denotes terms of O�p2� that are dropped in the
replica p→0 limit. As n�K−1 from Eq. �5�, Eq. �A11� be-
comes

Tr��i ln � j� = − Tr��I + ni�ln�I + nj� − ni ln nj� . �A13�

When �i�� j Eq. �A13� produces the form �19� for the en-
tropy of a Gaussian-coherent ensemble in terms of its ex-
pected occupation number matrix. More generally, Eq. �A13�
is used to obtain the expression �23� for the Kullback-Leibler
divergence �19�.
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